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Cosmological Perturbations of Quantum
Mechanical Origin: Are Nonvacuum Initial
States Allowed?
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We address the question of whether nonvacuum initial states for cosmological
perturbations are allowed, or whether they are ruled out on the basis of present
experimental and observational data. Our choice of a nonvacuum initial state is
guided by the idea that the initial state could have a built-in characteristic scale.
We find that a class of initial states can fit the data; however, the initial states
must be close to the vacuum.

1. INTRODUCTION

The inflationary paradigm was proposed in order to explain the shortcom-
ings of the Big Bang cosmological model. In addition, it offers a scenario
for the generation of the primordial density perturbations, which can lead to
the formation of the observed large-scale structure. Generic predictions of
simple inflationary models are a scale-invariant spectrum with, provided the
quantum fields are initially placed in the vacuum, Gaussian fluctuations.

Indeed, it is almost [1] always assumed that the initial state of the
perturbations is the vacuum. Let us see whether this assumption can be
justified. The choice of the initial quantum state in which the quantum fields
are place should be made on the basis of full quantum gravity. This theory
is at present unknown. One may select a “maximally symmetric state” [2]
as an initial state of the universe. However, in the context of quantum gravity,
there exists a privileged scale, the Planck scale. Thus, we believe that there
is no theoretical proof for taking the vacuum as the initial state in which
quantum fields are placed. Consequently, we find [3] that it is worth studying
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nonvacuum initial states for cosmological perturbations. Our choice of a
nonvacuum initial state is guided by the idea that the initial state could have
a built-in characteristic scale. Rather than relying on theoretical arguments,
we allow for the possibility of nonvacuum initial states and we examine [3]
whether the consequences for the cosmic microwave background radiation
(CMBR) anisotropies and the power spectrum of galaxies and cluster of
galaxies are in conflict with the current data. We will find [3] that there exists a
window for the free parameters of the model, which fits the observational data.

2. NONVACUUM INITIAL STATE FOR COSMOLOGICAL
PERTURBATIONS

2.1. Perturbations of Quantum Mechanical Origin

The background model is described by a Friedmann–Lemaître–
Robertson–Walker (FLRW) metric whose spacelike sections are flat. Inflation
is driven by a single scalar field, w0(h). We introduce the background quanti-
ties *(h) [ a8/a and g(h) [ 1 2 (*1/*2) (the primes denote the derivatives
with respect to conformal time h). In the synchronous gauge, the line element
for the FLRW background plus scalar perturbations reads [4]

ds2 5 a2 (h) H2dh2 1 Fdij 1
1

(2p)3/2 # dk 1h(h, k)dij

2
hl(h, k)

k2 kikj2eik?xG dxi dx jJ (1)

where the functions h, hl represent the scalar perturbations of the gravitational
field and the longitudinal–longitudinal perturbation, respectively. The pertur-
bations of the scalar field are Fourier decomposed according to

dw(h, x) 5
1

(2p)3/2 # dk w1(h, k)eik?x (2)

The perturbed Einstein equations couple the scalar sector, h and hl , to the
perturbed scalar field w1. The residual gauge-invariant quantity m(h, k)
defined by [4]

m [
a

*!g
(h8 1 *gh) (3)

can be used to express all other relevant quantities. In the synchronous
gauge, m(h, k) is related to the gauge-invariant Bardeen potential through
the equation [5]
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F 5
*g
2k2 1 m

a!g2
8

(4)

The perturbed Einstein equations imply that the equation of motion for m(h,
k) is [4]

m9 1 Fk2 2
(a!g)9

(a!g)
Gm 5 0 (5)

Since the origin of the perturbations is quantum mechanical, the normalization
of the perturbed scalar field, and consequently of the scalar perturbations, is
completely fixed in the high-frequency regime. In this regime, the perturbed
field can be considered as a free field in the curved FLRW background space-
time. The Fourier component operator of the perturbed field ŵ1(h, k) in the
limit k → 1` is

ŵ1(h, k) 5
!"

a(h) Fck(h0)
e2ik(h2h0)

!2k
1 c†

2k(h0)
e2ik(h2h0)

!2k
G (6)

In the high-frequency regime

lim
k→1`

m̂(h, k) 5 24!pGa(h) lim
k→1`

ŵ1(h, k) (7)

If we define

fk(h) [ 24!p[(*g)/(2k2)][jk /(a!g)8] (8)

where jk(h) is the solution of the equation of motion for m such that
limk→1` jk 5 e2ik(h2h0)/!2k, we find that the dimensionless Bardeen operator
F̂(h, x) reads [3]

F̂(h, x) 5
lPl

(2p)3/2 # dk [ck(h0)fk(h)eik?x 1 c†
k(h0) f *k (h)e2ik?x] (9)

2.2. Quantum States

We specify the quantum state in which F̂(h, x) is placed, under the
hypothesis that the perturbations are initially in a nonvacuum state. Our
choice of nonvacuum states is guided by the idea that one must introduce a
scale in the theory, denoted by the wave number k0. We examine three
different nonvacuum state [3].

Let $ be the domain in momentum space between the spheres of radius
k0 2 s and k0 1 s. Since $ is invariant under rotations, this definition is
compatible with the assumption of isotropy of the universe. The first state
we consider is [3]
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.C1(k0, s, n)& 5 ^
kP$(k0,s)

.nk& ^
P¸$(k0,s)

.0P& (10)

The state .nk& is an n-particle state satisfying, at h 5 h0, ck.nk& 5 !n.(n 2
1)k& and c†

k.nk& 5 !n 1 1.(n 1 1)k&. Clearly, in the state .C1& the transition
between the empty and the filled modes is sharp and therefore rather unphysi-
cal. In order to “smooth out” the quantum state .C1&, we introduce the function
g(s). We thus define the state [3]

.C2(k0, n)& [ # dsg(s).C1(k0, s, n)& (11)

where, a priori, g(s) is an arbitrary function of s.
Finally we define a state that will allow us to work with an effective

number of quanta which will no longer be an integer. This state is [3]

.C3(k0)& [ o
`

n50
h(n).C2(k0, n)& (12)

The function h(n) is arbitrary. The state .C3(k0)&, which depends on k0 and
on the free parameters characterizing the functions g(s) and h(n), seems to
be the most natural rotational-invariant, smooth, quantum state that privileges
a scale.

2.3. Power Spectra

The power spectrum of F̂(h, x) in the state .C&, denoted by PF(k;
.C&), is defined through the calculation of the two-point correlation function
K2(r; .C&):

K2(r; .C&) 5 #
`

0

dk
k

sin kr
kr

k3PF(k; .C&) (13)

We calculate the power spectra of the Bardeen potential operator in the three
previously defined states .Ci&, i 5 1,2,3. For the state .C1&, we obtain [3]

k3PF(k; .C1&) 5
l2
Pl

2p2 k3. fk.2{1 1 2n[H(k 2 k0 1 s) 2 H(k 2 k0 2 s)]} (14)

where H is a Heaviside function. This spectrum is not continuous, due to
the very crude definition of the state .C1&. For the quantum state .C2&, we
obtain [3]

k3PF(k; .C2&) 5
l2
Pl

2p2 k3. fk.2(1 1 2ne2(k2k0)2/S2
) (15)

where n is an integer and S is a free parameter.
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Finally, for the state .C3&, we get [3]

k3PF(k; .C3&) 5
l2
Pl

2p2 k3. fk.2(1 1 2neffe2(k2k0)2/S2
) (16)

Here the effective number of quanta neff is given by [3]

neff 5
(`

n50 n.h(n).2

(`
n50 .h(n).2 (17)

The spectra of Eqs. (15) and (16) possess a peak around the scale k0. The
position of the peak is controlled by the value of k0, its width by S, and its
height by n or neff.

We need the primordial spectrum only for large wavelengths and in
this limit,

k3PF(k; .0&) 5 ASknS2 1 (18)

with

AS 5
l2
Pl

l2
0

g(1 1 b)2

22b14 cos2(bp)G2(b 1 5/2)
(19)

where

nS 5 2b 1 5, a(h) 5 l0.h.11b (b& 2 2) (20)

The initial power spectrum for the Bardeen operator placed in the state .C2&
reads [3]

k3PF(k; .C2&) 5 ASknS21(1 1 2ne2(k2k0)2/(2
) (21)

If the state is .C3&, we just have to replace the integer n with the real
number neff.

There is an interesting prediction of our model concerning the statistics
of the fluctuations. More precisely, in our model the four-point correlation
function shows deviations from Gaussianity. On the other hand, broken scale-
invariant spectra, where the privileged scale arises as a privileged energy in
the inflaton potential, lead to Gaussian fluctuations [6]. Recently, some non-
Gaussianity was detected [7–9] in the CMBR map. If it is indeed confirmed,
then broken scale-invariant models, our model, as well as standard inflation
are ruled out. However, if some non-Gaussianity is present in the CMBR at
the level of the four-point correlation function, then our model could account
for this.
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3. COMPARISON WITH OBSERVATIONS

Observations of the CMBR anisotropies and of the matter power spec-
trum will give the best values of k0, (, and n/neff. We take the following
values of the cosmological parameters: the Hubble parameter is h 5 0.5, the
baryonic matter-density parameter is Vb 5 0.05, the density parameter V0

5 1 and, there is no significant reionization. We consider two models: (i)
the SCDM model with L-density parameter VL 5 0 and CDM-density
parameter Vc 5 0.95 and (ii) the ACDM model with VL 5 0.6, Vc 5 0.35.

The spectrum must be normalized, in other words, the value of AS must
be determined. To do so, we use the value of Qrms-PS , 18 mK measured by
the COBE satellite. In the large-wavelength approximation, we have dT/T ,
(1/3)F. The multipole can be written as [3]

Cl 5
4p
9 #

1`

0

dk
k

[ jl[k(h0 2 hLSS)]2AS(nS)knS21(1 1 2ne2(k2k0)2/(2
)] (22)

where jl is a spherical Bessel function of order l, and h0 and hLSS denote
respectively the conformal times now and at the last scattering surface. For
a scale-invariant spectrum we obtain [3]

AS 5
9.4 3 10210

1 1 24nI
, where I [ #

1`

0

du
u22nS

[ j2(u)]2e2(u2u0)2/U2

(23)

As a next step, we must choose the three parameters k0, n, and (. The power
spectrum seems [10] to contain large-amplitude features at the scale ' 100h21

Mpc, which corresponds to a wave number equal to 0.062h Mpc21. Since
no other value for a privileged scale has been detected so far, we choose [3]

k0 5 0.031 Mpc21 (24)

The exact value of (, as long as it is not too large, will not affect our
conclusions. In what follows, we consider [3]

( 5 0.3k0 (25)

Let us discuss the matter power spectrum. The baryon power spectrum is

drb

rb
5 AT 2(k)

g2(V0)
g2(Vm)

k[1 1 2ne2(k2k0)2/(2
] (26)

where T(k) is the transfer function and the coefficient A is obtained by
normalizing the spectrum to COBE data. This leads to
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Fig. 1. CMBR anisotropies for the SCDM model, with neff ranging from 0 to 4 with a step of
1 (from the bottom to the top). Diamonds represent COBE data, squares the Saskatoon data,
and crosses the CAT data.

A 5 (2lH)4 6p2

5

Q2
rms-PS

T 2
0

1
1 1 24nI

5
6.82 3 105

1 1 24nI
h24 Mpc4 (27)

where the Hubble radius lH is equal to 3000h21 Mpc.
We plot the multipole moments and the power spectrum for different

values of n and/or neff. The theoretical predictions for the multipole moments
and the power spectra are obtained using a Boltzmann code.

We consider the sum of the scalar plus the tensor contributions to the
CMBR anisotropies. In Figs. 1 and 2 we show the CMBR anisotropies and
the matter power spectrum for the SCDM model, including both scalar and
tensor contributions. In Figs. 3 and 4 we show the CMBR anisotropies and
the matter power spectrum for the ACDM model including both scalar and

Fig. 2. Power spectrum for the SCDM model, with neff ranging from 0 to 4 with step of 1.
Diamonds represent the APM data, squares the velocity field measurements, and crosses the
data given by Einasto et al.
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Fig. 3. Same as Fig. 1, but for the ACDM model, with neff ranging from 0 to 4 with a step
of 1 (from the top to the bottom).

tensor contributions. Clearly, matter power spectrum data favor a higher value
of neff than CMBR anisotropy data.

For both types of models, with and without a cosmological constant,
CMBR anisotropies measurements require [3] a higher value of neff than in
the case of an absence of tensor mode contribution. This is in agreement
with the matter power spectra.

4. CONCLUSIONS

We examined whether current experimental and observational data allow
nonvacuum initial states for cosmological perturbations. Our choice of a
nonvacuum initial state was guided by the idea that the initial state could
have a built-in characteristic scale. We calculated the power spectra of the

Fig. 4. Same as Fig. 2, but for the ACDM model, with neff ranging from 0 to 4 with a step
of 1 (from the top to the bottom).
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Bardeen potential and compared their theoretical predictions with the CMBR
anisotropy measurements and the redshift surveys of the distribution of
galaxies.

There exists a window for the free parameters such that good agreement
between the data and the theoretical predictions is possible. However, to
account for the observations, the initial state cannot be too different from
the vacuum.

The generic predictions of our model are a high amplitude of the first
acoustic peak, a nontrivial feature in the matter power spectrum, and devia-
tions from Gaussianity in the CMBR map. More experimental and observa-
tional data are needed to determine whether our new class of models represents
a viable alternative to the standard theory.
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